Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory

نویسندگان

  • I. Gazuz
  • M. Fuchs
چکیده

A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation forN bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external forceFex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz et al., Phys. Rev. Lett. 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active and nonlinear microrheology in dense colloidal suspensions.

We present a first-principles theory for the active nonlinear microrheology of colloidal model system; for a constant external force on a spherical probe particle embedded in a dense host dispersion, neglecting hydrodynamic interactions, we derive an exact expression for the friction. Within mode-coupling theory, we discuss the threshold external force needed to delocalize the probe from a host...

متن کامل

Theory of nonlinear rheology and yielding of dense colloidal suspensions.

A first-principles approach to the nonlinear flow of dense suspensions is presented which captures shear thinning of colloidal fluids and dynamical yielding of colloidal glasses. The advection of density fluctuations plays a central role, suppressing the caging of particles and speeding up structural relaxation. A mode coupling approach is developed to explore these effects.

متن کامل

Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a...

متن کامل

Nonlinear Rheological Properties of Dense Colloidal Dispersions Close to a Glass Transition under Steady Shear

The nonlinear rheological properties of dense colloidal suspensions under steady shear are discussed within a first principles approach. It starts from the Smoluchowski equation of interacting Brownian particles in a given shear flow, derives generalized Green-Kubo relations, which contain the transients dynamics formally exactly, and closes the equations using mode coupling approximations. She...

متن کامل

First-principles constitutive equation for suspension rheology.

Using mode-coupling theory, we derive a constitutive equation for the nonlinear rheology of dense colloidal suspensions under arbitrary time-dependent homogeneous flow. Generalizing previous results for simple shear, this allows the full tensorial structure of the theory to be identified. Macroscopic deformation measures, such as the Cauchy-Green tensors, thereby emerge. So does a direct relati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013